METRIC AND TOPOLOGICAL SPACES: EXAM 2022/23

A. V. KISELEV

Problem 1 (each new full proof counts 10%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space, let $\mathcal{Y} = \{A \subseteq \mathfrak{X} \mid A \neq \emptyset\}$, and for any $U, V \in \mathcal{Y}$ put $\varrho(U, V) = \inf_{x \in U, y \in V} d_{\mathfrak{X}}(x, y)$. Is ϱ always a metric on \mathcal{Y} ? (state and prove, e.g., by counterexample)

Problem 2 (15%). If \mathcal{X} is Hausdorff and $x \in \mathcal{X}$, then the intersection of all open subsets of \mathcal{X} containing x is the singleton set $\{x\}$. (prove)

Problem 3 (15%). Give an example of non-empty topological space containing more than one point and with co-finite topology which is Hausdorff.

Problem 4 (20%). If \mathcal{X} is a connected space containing more than one point, and if $\{x\}$ is closed for every $x \in \mathcal{X}$, then the number of points in \mathcal{X} is infinite. (prove)

Problem 5 (20%). Prove: \mathbb{R}^2 with co-finite topology is compact.

Problem 6 (20%). Let \mathcal{X} be a complete metric space and $f: \mathcal{X} \to \mathcal{X}$ be a mapping such that for some r > 1 its *r*-time iteration $(f \circ)^r = f \circ \ldots \circ f$ is a Banach contraction.

Prove that f has a unique fixed point p in \mathcal{X} , regardless of f itself being (or maybe not?) a contraction.

Date: November 11, 2022. Good luck & take care !